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We show that a simple relaxation scheme of the type proposed by Jin and Xin
[Comm. Pure Appl. Math18, 235 (1995)] can be reinterpreted as defining a parti-
cular approximate Riemann solver for the original systermafonservation laws.
Based on this observation, a more general class of approximate Riemann solvers is
proposed which allows as many ar @aves in the resulting solution. These solvers
are related to more general relaxation systems and connections with several other
standard solvers are explored. The added flexibilityhohZves may be advantageous
in deriving new methods. Some potential applications are explored for problems with
discontinuous flux functions or source termsy 2001 Academic Press

1. INTRODUCTION
Consider the conservation law
ur + f(u)x =0, (1.1)

whereu € IR™ and the flux functionf (u) may be nonlinear. We assume the system i
hyperbolic, so the Jacobiafi(u) is diagonalizable with real eigenvalues. Many finite-
volume methods for this conservation law are based on solving Riemann problem:
cell interfaces between the neighboring cell averages. The Riemann problem consist
Eqg. (1.1) together with piecewise constant data with a single discontinuity between t
valuesU, andU,. Often some approximate Riemann solver is used, which consisfs, of

wavesWP e IR™ propagating at some speesfse IR for p=1,2,..., M,,. The vectors

1 This work was supported in part by DOE Grant DE-FG03-96ER25292 and NSF Grant DMS-9803442.
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WP represent the jump in across each wave and must sum up to the total jump,
My,
U —U=> WP 1.2)
p=1

For a linear system
Ut + Auy = 0, (1.3)

for example, the exact Riemann solution has this form, Mth= m and thesP the eigen-
values of A. EachWWP is an associated eigenvector. The waves can be determined by f
choosing some specific set of eigenvectdtand then solving the linear system

m
U —U=> afrP (1.4)
p=1

for the scalar coefficients? and finally settingVP = «PrP. We find thate = R~(U, —
U)), whereR is the matrix of right eigenvectors. In this case we also have
m
AU — AU = AU, —Up) =) sPIWP. (1.5)
p=1
More generally, suppose for a nonlinear fléithat the decomposition (1.2) and choice
of speedsP have the property that

My,
f(U)— fU) =) sPWP, (1.6)
p=1
which is a generalization of (1.5). Then an upwind algorithm and high-resolution varial
can be defined in terms of these waves and speeds, for example, using the wave-propac
approach of [36], which is reviewed in Section 8.
One important approximate Riemann solver of this form was proposed by Roe [45] ¢
has been extensively used. The Jacobian mdthix) is evaluated at a special average of
U, andU,, defining a matrixA with the property that

AU, —U)) = F(U) — F(U). 1.7)

The eigenvaluesP of A are used as the wave spesfand the eigenvectors dfare used

to define the waves. Then (1.6) follows from (1.7). In this case alygin= m. If the true
Riemann solution contains a transonic rarefaction wave, however, then this approxin
solution may need to be modified using an “entropy fix” as described in Section 5. C
possible approach is to replace the corresponding wave by a pair of waves movin
opposite directions. In this case we could then view the approximate Riemann solutiol
consisting ofM,, = m + 1 waves.

In this paper we explore a more general class of Riemann solvers in Whjck 2m

waves are used, although some of these may coalesce so that the number can be re
Instead of the standard decomposition of the form (1.4) we perform a decomposition of

form
Ur=U —al w! Z[wz] zm[wzm}
{f(Ur)— f(Uﬂ} - [qjl] P R PP B (1.8)
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where the vectorswP, ¢P € IR™ are first chosen in some manner (several possibilitie
are discussed below) along with spesfidfor p=1, 2, ..., 2m. The scalar coefficients
al, ..., o® are then determined by solving thenZ 2m linear system defined by (1.8).
This is possible provided then2vectors appearing in (1.8) are linearly independent. Th
waves needed for updating cell averages are then

WP =aPuwP, p=12...,2m, (1.9)

with speedsP. We will refer to this as aelaxation Riemann solvdor reasons which will
be made clear in Section 2.
In general we will choose

¢P = sPwP, (1.10)

although this is not entirely necessary (see Section 8). The rationale for this choice is
(1.6) will then automatically be satisfied by the resulting waves, no matter how"tlaad

sP are chosen. This is accomplished by introducing more degrees of freedomatt2er
thanm) and requiring that the jump i is decomposed in a manner consistent with the
jumpinu. Note that (1.10) is reminiscent of the Rankine—Hugoniot jump conditions relatir
the jump inf across a shock to the jumpin

One goal of this paper is to show that by considering a decomposition of the form (1.8
is possible to gain a more unified view of several approximate Riemann solvers alread
use, including the Roe solver, the Roe solver with an entropy fix, and the simple HLL a
HLLE solvers. These solvers involve fewer than @aves in their natural implementation,
but can be reinterpreted in the above form with some waves coalesced into fewer wa
See Sections 3 through 6.

We have also found that the relaxation scheme of Jin and Xin [26] (at least in the lir
as the relaxation time vanishes) is closely related to an approximate Riemann solve
this type; see Section 2. Indeed the decomposition (1.8) was first suggested to us b
attempt to generalize and improve the relaxation scheme. Another goal of this paper i
explain and explore this connection. The approximate Riemann solver interpretation r
lead to new insights into relaxation schemes and how they might be improved. Convers
methods based on standard approximate Riemann solvers such as Roe’s can be reinter
as modified relaxation schemes. This may aid in the theoretical analysis of these mett
(see Section 7).

The added flexibility of specifyingrd waves rather tham also allows some interesting
new possibilities in deriving approximate Riemann solvers. Exploring some of these is
final goal of this paper. In Sections 9 and 10 we look at possible applications to conserva
laws with discontinuous coefficients and with source terms.

2. RELAXATION SCHEMES

Relaxation schemes have recently been widely applied and studied; see, for exan
[1, 9, 10, 18, 24, 28, 31, 38]. Another related class of numerical methods are the “kine
schemes” based on the Boltzmann equation and relaxation toward equilibrium. See [2]
one discussion of these connections. Bouchut [6, 7] has recently presented an interpret
of kinetic schemes as approximate Riemann solvers for flux-vector splitting methods, thoi
these take a rather different form from what we introduce here.
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The original relaxation scheme of Jin and Xin [26] is based on replacing the conserva
law (1.1) by a larger system of dimensiom2
U +uv=0
1 (2.12)
v + D2uyx = =(f(u) —v),
T

whereu, v € IR™, andD? € R™™ is a positive definite matrix. Jin and Xin choose it to
be a diagonal matrix with positive diagonal elements and c&l hut we useA for linear
systems such as (1.3) and call the mab&in (2.1) to avoid square roots in formulas below,
and also because this form will be generalized below to a situation vibeie replaced
by the product of two different matrices. We assume without loss of generalitipthself
has positive eigenvalues > 0 for j = 1,2, ..., m. Then the matrix

2] o2

appearing as the coefficient matrix on the left-hand side of the system (2.1jnheigen-
values given by the paiesd! for j =1,2,..., m.

The original conservation law has been replaced by a linear hyperbolic system wit
relaxation source term which rapidly drives— f (u) when the relaxation time > 0 is
small. If we seb = f (u) then the first equation of (2.1) reduces to the original conservatic
law. In some cases it can be shown analytically that solutions to (2.1) approach soluti
to the original problem as — 0. A general necessary condition for such convergence
that asubcharacteristic conditiobe satisfied. For (2.1), this requires that every eigenvalu
A of f/(u) satisfies

—Omax < A < Gmax, (2.3)

wheredmax = max; d! is the spectral radius @. This insures that the characteristic speed:
of the hyperbolic part of (2.1) are at least as large as the characteristic speeds of the ori
problem. See [11, 21, 39, 41, 42, 48, 49], for some discussions of this condition &
convergence properties.

The relaxation scheme we describe is not exactly the same as Jin and Xin's, but is
simplest variant of it. We use a fractional step method to advance the solution by one t
stepAt:

1. GivenU" andV", apply some finite-volume method to update these over fitnby
solving the homogeneous linear hyperbolic system

Mﬁ {E?ZH mxzo- (2.4)

Call the new valuet)* andV *.
2. UpdateU*, V* to U1, V™1 by solving the equations

u =0
) 2.5)
v = ;(f(U) — )

over timeAt.
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Clearly we have) "1 = U*. The variablev evolves according to a simple linear ODE
since f (u) is constant during this evolution. An implicit Runge—Kutta method was recon
mended in [26], or alternatively this can be solved exactly,

Vr‘H—l — f(Un+1) + e—At/t(V* _ f(U n+1)). (26)
We will only be concerned with the limiting case— 0 in which case we can simply set
vl = fu™h = fU). (2.7)

(This is what is called theelaxed schemin [26].) The relaxation scheme then consists of
these two steps:

1. Solve a linear hyperbolic equation to update HdthndV to getU"+* andVv*,
2. IgnoreV* and sev"! = f (UML),

Inthe standard implementation, one works with a larger systemmeffuations and updates
bothU andV using a hyperbolic method, even though the resullirigs then ignored.

A slightly different and more efficient implementation makes it clear how this scheme
related to approximate Riemann solvers. Since we k8w = f (U"*1), we do not need
to keep track ofV separately and there is no need to updateto V*. Instead we view
the relaxation scheme as a way to updafeto U1 and store only thesa-vectors as in
any other finite-volume method for the original conservation law. We do still work with th
system (2.4) in the process of updating these vectors, but we now view this system onl
a means for defining an approximate Riemann solver. Given stiaimsdU, we compute

Vi = f(U)) andV; = f(U;) and then solve the Riemann problem for (2.4) with data

[ftjllh)]’ {fttr)} (2.8)

Solving this linear Riemann problem requires an eigendecomposition exactly of the fo
(1.8), where the vectors appearing in this decomposition arerthei@envectors of the
matrix (2.2). Once we have performed this decomposition, the wi¥es= oPwP and
speedssP (the corresponding eigenvalues of (2.2)) are used to updatem U™, The
relaxation process has disappeared altogether. Of course one could als8'stoceupdate
it to V* using the waveaP¢P, but this would be wasted effort sind& is never used.

Let zl be the eigenvector of the matrix that corresponds to the eigenvallie for j =
1,2,..., m. Then for eaclj the matrix (2.2) has a pair of linearly independent eigenvector

w21 Zi w2l Zi
L] = (2] La] e
with eigenvalues? -1 = —d! ands?/ = +d!, respectively. Note that these vectors satisfy
the assumption (1.10).
In particular, for the case of a diagonal matiix= diag(d*, d?, ..., d™) as used in [26],

we havez! = e/, the jth unit vector. The elements! of D must be chosen so that the
subcharacteristic condition (2.3) is satisfied. For the Euler equations, Jin and Xin cho
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them in [26] as some approximations to the eigenvalues, u, andu + c of the Jacobian
matrix (whereu is the velocity ana: the sound speed).

Note that wherz! = el, the decomposition (1.8) splits intodecoupled 2 2 problems
of the form

ul —u/

Vrj _Vlj d!

o yf] e

involving only thejth component of the vectdf and thejth component of the flux vector
V = f(U). Solving this system gives

’ 1 . . ’ . .
QA= o (d (U] - U)) - (V) - )
| . _ | _ (2.11)
0‘2] = 2di (dJ (Ur] - UIJ) + (VrJ - VIJ))

When applied to the Euler equations, for example, the density and its flux are split i
one pair of waves with speedsd?!, the momentum is split into a second pair of waves
with speedstd?, and the energy is split into a third pair of waves with speed$. The
splitting of each component is done in such a way that conservation is maintained, whic
guaranteed by the manner in which the flux differences are split along with the compon
of U — U, so that (1.6) is satisfied. In the next section we will show that this can be view
as a generalization of the HLL Riemann solver.

3. RELATION TO THE HLL SOLVER

A simple approximate Riemann solver was discussed by Hattah [20]. This HLL
solver consists of approximating the Riemann solution by two waves (regardless of
dimensiomm of the system) with some speegisnda, chosen to approximate the minimum
and maximum characteristic speeds of the system. It is often called the HLLE solver wil
the specific choice ody anda, recommended by Einfeldt [14] is used. The wave strength
are

W=Upn—U, W?=U, —Up, (3.1)
where the middle statd, is chosen to preserve conservation by requiring
(& —a)Um =a U —aU — (f(Uy) — fU)). (3.2)

This yields

Un = (aVUr —aU — (f(Ur) — fU))). (3-3)

& —a

Suppose for the moment tht= —a, with a, > 0. Then this is equivalent to the relaxation
Riemann solver described above if we tdkeo be the diagonal matri® = a, |, so that

1= di=—g and ¥ =di =a. (3.4)
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Then thejth system (2.10) splits thiggh component o), — U, into two waves propagating
at speeds, anda; . After doing this for alimn components we obtaim2waves, each carrying

a jump in only one component of But m of these waves travel at the same spaeahnd
the othem at speed, and so we can lump these together into two waves, which then mt
be the HLL waves (3.1) since both approaches are conservative. We can verify directly
these are the same by using the solution (2.11). The left-going wave carries afump

in the jth component and so the intermediate stitghasjth component

Ur{,] = U|] +O{2j_1

1 : _ _
= ﬁ(dj (Ur] +UIJ) - (Vr] _VIJ»
Loioy 1 j j
Zé(ur+UI)_ﬁ(f(Ur)_f(Ul))' (3.5)
Sinced! = a, = —a we have 2/ = a, — g and this agrees with thgth component of
(3.3).
We thus see that the relaxation scheme in the €&sed| amounts to using the HLL
Riemann solver witryy = —d anda, = d. Let A1 (u) denote thejth eigenvalue of the

Jacobian matrixf’(u). If we choose

d = max (max(|A! (UD1, 1A (UND) (3.6)

as an upper bound on the characteristic speeds (assuming the system is genuinely nonli
and then apply the first-order upwind method together with this approximate Riema
solver, the resulting method is simply Rusanov’s method, as discussed in [46], for exam
This method is also known as the local Lax—Friedrichs (LLF) method. If we chese
AX/At, an upper bound on all possible wave speeds provided the CFL condition is satis!
for the grid being used, then this method reduces to the classical Lax—Friedrichs (L.
method. We note in passing that the LxF and LLF methods can be extended to second-c
accuracy to obtain the central schemes of Nessyahu and Tadmor [43] and Kurganov
Tadmor [30], respectively, and connections between these methods and relaxation sch
are briefly discussed in the Introduction to [30].

If D is diagonal but the diagonal elemenitsare not equal (as in the choice of Jin and
Xin [26]), we can view the relaxation scheme as a generalization of the HLL solver in whi
separate speedd = —a/ = dJ are chosen for each component of the vectolt is not
clear that this generalization will be an improvement, however, since in coupled system
conservation laws we do not expect information in different componentsmpropagate
at different speeds. Rather, it is different eigencomponentgbfsed on the eigenvectors
of f’(u)) which propagate at different speeds. This suggests that a more substantial
provement might be made by replacing the unit vectdrs: el used in deriving HLL from
(2.9) by some approximations to the eigenvectord @fi). Generalizations of this form
will be pursued in Section 6.

First we present a generalization of the relaxation scheme that agrees with the n
general HLL method in the case whan# —a,. Rather than using a matrix of the form
(2.2), consider a relaxation system

u 0 | u 0
[v]t + {—D| Dr (D + Dr)] [UL - |:(f(u) _ v)/r} ; (3.7)



RELAXATION RIEMANN SOLVERS 579

whereD; = &1 andD,; = & 1. The coefficient matrix appearing in this system,

0 |
[—Dl Dr (D + DrJ ’ (38)

has eigenvector pairs

j
d [:ej} , (3.9)

el
Lu eJ}

with eigenvaluesy anda,, respectively. Note that § = —a, then the matrix (3.8) reduces
to (2.2). Using these vectors (3.9) in the decomposition (1.8) gives the HLL solver 1

arbitrarya anda;, .

4. RELATION TO THE ROE SOLVER

Rather than using?/~! = w?l =€l (for j = 1,2,..., m) in the decomposition (1.8),
it is attractive to use approximations to the eigenvectors of the Jacobian matrixnear
U andU, . One obvious choice is to use the eigenvecidrsf the Roe matrixA satisfying
(1.7). If we then choose two distinct speegis# s/ we will have two linearly independent

vectors
2j-1 fi 2j Fi
YOl L and Yo = ] (4.1)
¢2]—1 qJrj ¢21 Sr]I’J
Since the’l for j = 1, 2, ..., mare linearly independent it then follows that the full set of
2m vectors given by (4.1) fof = 1, 2, ..., m will span IR™ and a decomposition of the

form (1.8) can always be performed to define an approximate Riemann solution.

It turns out that we can also choose= s/ provided that we choose this value toe
the jth eigenvalue of the matrid. In this case the two vectors in (4.1) are identical anc
there are onlyn distinct vectors in (1.8),

[ U - U }_Al F1
f(U)— fup| — % | Rt

This 2n x mlinear system has a unique solutiere TR™ in spite of the fact that it appears
to be overdetermined. The particular vector on the left-hand side of (4.2) lies in the spa
thesem vectors sincé! and/ come from the Roe matri& satisfying (1.7). In fact, we
can simply solve

4+ .4 am

f-‘m
imfm] . (4.2)

U —U =a' '+ +amm (4.3)
as one usually does with the Roe solver and then
fU) = f(U) =@ 4o 4 @mMamem (4.4)

will automatically be satisfied by (1.7), as is easily seen if we multiply (4.37\by
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5. ENTROPY FIXES

A failing of the Roe solver is that it can lead to entropy-violating shocks in numeric:
solutions based on this decomposition. This typically happens if the true Riemann solut
contains a transonic rarefaction wave in some family, sakttméamily, with characteristic
speeds that increase from negative to positive values through the rarefaction fan. Thism
that information in thekth family should travel partly to the left and partly to the right and
affect cell averages on both sides. The Roe solver approximates every wave by a si
discontinuity propagating at a speed given by an eigenvalud, aind in the transonic
rarefaction casé® ~ 0 typically and the proper spreading does not occur. An entropy fi
is often used to address this problem. One possibility proposed by Harten and Hyman
(see also [35]) is to replace the single waé*"in this case by a pair of wavest* and
afP* propagating at speed§ < 0 < s that are chosen to approximate the characteristi
speeds at each edge of the rarefaction fan. The total wave strength should be the san
we need

af 4+ of = &k, (5.1)
and to maintain conservation we also require
afst + kgt = @Mk (5.2)
This gives a linear system of two equations to solvesfoandaX, yielding
ok = (&ksrk _ ik)/(srk _ §k>
o = (-5 /(5 - 5).

Exactly this same method can be derived by using a relaxation Riemann solver of
form (1.8), which we now take to be of the special form

U — U 1 it 1 fl m fm m fm
{f(Ur) _ f(U|)] =« Llfl} + o L{lfl} +-t o mem] +o [srmfm} . (54

Here we are allowing each wave speddo be replaced by a pair of speez,'i'sands,j f

we takes' =/ = A for every j then this reduces to the original Roe solver with eact
vector repeated twice. This system will have infinitely many solutions since;aapda;/
satisfying

(5.3)

o 4o =a (5.5)

provides a solution, where! “are the Roe coefficients in (4.2). For any such choiceljof
anda/ we essentially have the original Roe solver—we have simply replaced one wave
two waves propagating at the same speed and adding up to the original wave.

If the kth family has a transonic rarefaction, however, then we can chsfose0 < s¢
(while still takings' = s/ = A1 for j # k) and the decomposition (5.4) results in the Roe
solver with the entropy fix described above. As in the discussion of the HLL method
Section 3, including\ f in the decomposition (5.4) ensures that conservation is maintaine
and leads to the same coefficieafsandaX as in (5.3).
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6. GENERALIZED ROE SOLVERS

We could go further and allovqj # sl in each family, while still using the eigenvec-
torsf! of the Roe matrix and a decomposition of the form (5.4). One possible choi
might be

s =ru), §=rwU, 6.1)

forj =1,2,..., m. This choice would automatically give spreading across any rarefacti
wave, including transonic ones. On the other hand {{J;) > A1 (U,) then thejth wave

in the true Riemann solution is presumably a shock, but we would be approximating it
two waves. We can still solve the system (5.4). The state that arises in the approxin
solution between these two waves can be viewed as an approximation to the value
would be found by averaging an overturned compression wave as in Brenier’s transp
collapse method [8] or the large time step method of [34]. This also has similarities to
method developed by Engquist and Osher [15] for scalar problems and Osher and Solo
[44] for systems, often called the Osher solver in general. In this approach only the inte
curves of the eigenvectors are used to compute an approximate Riemann solution, Sc
rarefaction waves and overturned compression waves are used in every family. Hence
with the choice (6.1) might be viewed as an approximation to the Osher solver based on
averages. Perhaps a closer connection can be made with a different choice of eigenve
and speeds in (5.4).

Note that ifs1J ands/ have the same sign then the generalization proposed in this sect
does not really change the contribution from tith family to the numerical solution, at
least not at the level of a first-order upwind method based on these waves. This is bec
the two waves in this family affect only one of the neighboring cell averages and might
well be lumped into a single wave. We can combine them as

i| il i|
A gifi tor §Fi =B i | 62)

for some choice op! ands!, wheres! should then be used as the speed of this lumpe
wave. We can easily solve for the required values:

Bl =o +of
L 6.3)
g S Tos
Ol|l ‘|‘Olrl

Onthe other hand, we know there is a unique decompositiop ef U, into the eigenvectors
f1 with the coefficients:f, and from this we can deduce that in faidt= @l and also that
si = AJ, the corresponding Roe velocity.

It is only in the transonic case that something different is obtained by the more gen
choice (6.1). For a transonic rarefaction this gives a standard entropy fix, as already
cussed. For a transonic shock this would introduce additional dissipation. This may ¢
be desirable in some cases, since the lack of dissipation in shocks for il is also
known to cause numerical difficulties, such as nonphysical oscillations near slowly mov
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shocks. The addition of more dissipation in this case is one approach to improving soluti
in this case. See, for example, [3, 13, 25, 27].

A further generalization of this solver is obtained by using vedtbia (5.4) that are not
the eigenvectors of the Roe matrix. This may be useful for problems where a Roe avel
satisfying (1.7) is not available, and instead one wishes to use a simpler average suc
A= f’(%(U| +U,)). By taking thef! in (5.4) to be the eigenvectors of this matrix and
choosing some reasonable valuesgoands/, for example, (6.1), it is possible to obtain
consistent decompositions bf — U, and f(U;) — f(U)) in terms of these @ waves.
Moreover, we can merge each pair of waves into a single wave using (6.2 withds!
defined by (6.3) if desired (typically in all but the transonic rarefaction case). We then he
a decomposition intan waves,

U —U=> pif (6.4)
and set of speeds for which

f(U)— fU) =) spif (6.5)

j=1

holds. This mimics animportant property of the Roe solver thatis useful in wave-propagat
implementations (see Section 8).

One possible application of this idea would be to use the Roe eigenvectors coming fi
a simpler but related system of equations as an approximation. This could be useful
problems where a Roe matrix cannot be found directly. A similar idea has been propose:
by Coquel and Perthame [12] and implemented by In [22] for one particular system. Tt
use the classical Roe solver for the polytropic Euler equations in order to solve real-
problems with more complicated equations of state. An additional energy variable is adi
to the system and relaxation in the energy equations is used to couple the two. In the |
of zero relaxation time this can be viewed as defining a new approximate Riemann so
for the real-gas problem. This method is not directly in the form of the relaxation Riema
solver (5.4), however.

7. THE ROE SOLVER AS A RELAXATION SCHEME

The Roe solver and the generalization presented in the previous section can be vie
in the context of relaxation schemes using the connection introduced in Section 2. T
may be useful in analyzing the Roe scheme. The decomposition (5.4) arises naturally ir
process of solving ther@ x 2m linear system appearing in a relaxation scheme based ¢
the relaxation system (3.7). However, the matribgsand D, are no longer diagonal, but
instead are given by

Di=RSR!, D, =RSR%, (7.1)
whereR is the matrix of Roe eigenvector§, = diag(st, ..., 5™ and § =diags?, .. .,

s™. If the speeds are all disting, # s/, then the coefficient matrix (3.8) is diagonalizable
and the vectors appearing in (5.4) are the eigenvectors. For the original Roe scheme, o
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other handgj =s/ =4l forall j. Inthis caseD, = D, = A and this matrix reduces to

o o2

This matrix is defective: each eigenvaliié has algebraic multiplicity 2 but geometric
multiplicity 1 and there are onlyn distinct vectors in (5.4) as already discussed.

Normally a relaxation system of the form (2.1) or (3.7) yields a solution t) which
may converge to the solution of the original conservation law as 0, but will not agree
with this solution forr > 0. Instead, it approximates the solution to a viscous conservatic
law of the form

U + f(U)x = T(BU)Uyx + O(7?), (7.3)

where the viscosity matribB(u) can be determined by a Chapman—-Enskog expansic
[10, 39]. The structure of this viscosity matrix can play a role in determining whether tl
correct entropy-satisfying solution is obtained in the limit> O; see, for example, [6, 7,
17, 40]. For a relaxation system with the coefficient matrix (7.2), we find that

B(u) = —A%2 + 2Af'(u) — (f'(u))2 (7.4)

Note that if U, ~ U, then A ~ f’(u) and the viscosity matrix vanishes in the case of
equality. Moreover, even when there is a large jump betwgesndU;, it is possible that
this relaxation system will reproduce an exact weak solution to the original conservation |
even wherr > 0, as if there were no viscosity. This happens in the special case when
consider a Riemann problem between stateandU, that satisfy the Rankine—Hugoniot
jump condition for some scalar valsg

f(Up) = f(U) =sU, —Up. (7.5)

Suppose we solve the relaxation system

[ﬂt+ [—?&2 ZIA} [ﬂx B [(f(u)o—v)/f] (7.6)

with this Riemann initial dat&);, U; andVi = f (U)), V; = f (U;) and with the matrixA
chosen to be the Roe matrix for this data (and frozen at this value eueanidv evolve).
Then the property (1.7) of the Roe matrix implies that— U, is an eigenvector of,
proportional tofk for somek, and thats = ¥ is the corresponding eigenvalue. It follows
that

u(x, t) = u(x — A, 0)

i (7.7)
v(X, 1) = v(x — A*t, 0) = f(u(x, 1))

is the solution to the relaxation system (7.6) for any value .ofhe jump discontinuity
simply propagates with speed and sincev = f (u), the source term vanishes. This is a
weak solution of the original conservation law in this case, though it may not satisfy t
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entropy condition. If the discontinuity should spread into a rarefaction wave, the relaxati
system will instead produce the expansion shock.

Of course if this relaxation system is now used numerically as part of a relaxation schel
then numerical viscosity may be added when the linear system is solved numerically.
in the case\k = 0 it is possible that no smearing is introduced, as, for example in Roe
first-order method which produces entropy-violating solutions in the transonic case. |
well known that this is caused by a lack of numerical viscosity, which has been extensiv
analyzed by other means, but it is interesting to observe that this phenomenon is conne
with a relaxation system that itself lacks viscosity and produces entropy-violating we
solutions even in the case when the data is not transonic. It is also interesting to note tha
viscosity matrix (7.4) generally fails to be positive definite. In fadhiénd f’(u) commute
thenB(u) = —(A — f/(u))2is negative definite.

Note that adding an entropy fix to Roe’s method, as described in Sections 5 and 6, chal
the relaxation system to one of the more general forms (3.7). The entropy-violating we
solution is no longer an exact solution, as we have explicitly added spreading of this way

8. WAVE-PROPAGATION ALGORITHMS

A relaxation Riemann solver of the general type we have discussed could be use
conjunction with any numerical method that is based on approximate Riemann solve
One simple finite-volume method that gives high-resolution results and directly use
wave decomposition of the form (1.2) is the wave-propagation method described in [:
and implemented in theLAwPACK software [33]. This method uses an updating formulz
of the form

At At | ~ ~
Ut =up - E(J‘HAUi—l/z + A" AUj102) — E(Fiﬂ/z — Fi—12), (8.1)

where A*AU;_1,, are the left-going and right-goinfuctuationsresulting from the
Riemann solution at the grid interfacg_1/,, and lfi_l/z are correction fluxesyielding
high resolution. For the Riemann problenxat; , the data ar&;, = u_, andU, = ui’ and
we denote the resulting waves and speed¥Wy1,, ands_1/>. The simplest method of
this form based on (1.2) hdS ;> = 0 and

M,

AFAU 1y = Z (Sp—l/Z)iWip—l/Z (8.2)
p=1

whereM,, is the number of waves produced by the Riemann soé7es min(s, 0) and

st = max(s, 0). This is the first-order upwind method (Godunov’s method) based on tt
approximate Riemann solution. In order to be conservative we require that

ATAUi_1 + AT AU 10 = f(Ui) — f(Uio). (8.3)

If a relaxation Riemann solver of the form (1.8) is used, then this will hold provided (1.10)
satisfied. Alternatively, with an arbitrary choicewf_, , andg” , /2 in (1.8) we can obtain
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a conservative method by setting

MU,‘

1
AFAU 1= > (1£sgn(s1/2)) 8" /2 (8.4)
p=1

The high-resolution correction fluxds —1/2 are defined in general by

1 S
= §Z|3p—1/2| (1 ’51 1/2’) i—1/2> (8.5)
p=1

whereV)P _1/2 Is a limited version of the wave)” _1/2, Obtained by comparm‘g\/I _1/2 With
the pth wave from the adjacent Riemann problem at eithes)» (if s _1/2 > 0) oratxi ;12
(if a"_l/z < 0). Any standard limiter can be applied. See [36] for more details.

If M, > mthenitmay be possible and more efficientto combine some waves together
use a smaller set of waves in these correction terms. For example, if the Roe solver wit
entropy fix is used then itis common to apply the entropy fix only in compuifgU; _1/2
and then use only the originad waves resulting from the Roe solver to define the correctio
fluxes. This is typically necessary when limiters are used since the neighboring Riem
problems are generally not transonic and provide omlyaves for comparison.

We also note that ﬂ} 12 = = 0 for any wave then it makes no contributiondd AU; _ —1/2
in (8.2) or toF;_ —1/2 in (8.5). In the applications discussed below in Sections 9 and 10, f
example, there will ber? waves produced by the relaxation solver, but onlgf these will
have nonzero speeds.

9. DISCONTINUOUS FLUX FUNCTIONS

As one example of how a relaxation Riemann solver withv@aves might prove useful,
consider a conservation law with a spatially varying flux functi@no, x). One way to solve
this problem numerically is to use a finite-volume method with the flux function discretiz¢
so that theith grid cell has a flux functionf; (u) associated with it. At a cell interface
we must then solve a Riemann problem with ddtaU, and two different flux functions
fi (u) and f, (u). When f; and f; are nonlinear, determining the exact Riemann solution fo
this situation may be nontrivial, e.g., [16, 29, 32, 47]. We are currently investigating t
possibility of using a Riemann solver of the form (1.8) for such problems and here ol
report some preliminary observations.

One natural way to use (1.8) might be to compute two sets of eigenvectors and eigenve
using the two Jacobian matricgqU,) and f, (U;). CallthesakI ,r, and)»J,rJ These could
be used to definer@vectors for use in (1.8). This does not seem to be a good idea in gene!
however. Often botlillJ andkrj will have the same sign, indicating what direction tfih
wave is propagating. Suppose these are both positive, for example, indicating that
wave is propagating into the cell on the right, where the flux functiof} ¢g). Then the
eigenvector) may be a useful component in the decompositionr batay be completely
irrelevant.

Instead, it is useful to observe that the Riemann solution must typically involve a statit
ary discontinuity inu (moving at speed 0) at the interface, between two vallijeandU*
related via

U = £ (U)). (9.)
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This is required because the flux must be continuous at the interface. This suggests the
Riemann solver should include waves that allow jumps in each of thecomponents of

u and combine to give no jump if. If we also have somm vectorsr | and speeds’ (for

j =1,2,...,m) that represent the propagating waves we expect the Riemann solutior
contain, then we can look for a decomposition of the form

Ur_U| — gl rl + -+ m rm + m+1 el + .4 2m em
fr (U — fiup] — ¢ | sirt @ gmpm [T g 1o

(9.2)

The hard part in general may be to determine a suitable choicé fonds’.
We illustrate this for one simple example, the variable-coefficient advection equation

U + @()U)x = O, (9.3)

wherea(x) > 0 everywhere. The Riemann problem with dgtaU, and speeds,, a, has
flux functions f;(u) = au and f; (u) = a,u. Physically this might model the density of
items traveling on a system of conveyer belts, at the junction between two belts movin
different speeds. The exact solution of this Riemann problem is

U if x/t<0
ux,t)y=q U* if0<x/t<a (9.4)
U, if x/t > a,
where
ay
U*= , 9.5
U (9.5)

as determined by the requirement thdl, = a, U* so that the flux is continuous.
Applying the decomposition (9.2) wittm = 1 to this simple problem yields the correct
Riemann solution if we take! = 1 ands! = a,. We have

Ur_UI _11 21
{au—au}_a[@]+a{J' 66

Solving fora?, «? yields

OllZUr _alUI/ar =U, —U",
(9.7)
o> =aV /a, — U, =U* — U,

whereU * is given by (9.5). These waves propagate with spetdsa, ands® = 0 and so
the exact solution (9.4) is achieved.

Another standard way to approach this variable-flux problem is to &igwas a second
variable in a system of two equations

ool =0 9
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This is now a nonlinear system of two conservation laws in which both fields are linea
degenerate (but there is no longer a spatially varying coefficient). The flux Jacobian is

a u
o o ©9)
with eigenvalues.! = 0, A2 = a, and eigenvectors
1_[U 2_ |1
r _[ } r _M. (9.10)

Solving the Riemann problem for this system again gives the solution (9.4).

Notice that attempting to use a Roe solver for the system (9.8) (as might be desirec
more complicated problems of this type) would be less successful than the simple Riemnr
solver proposed in (9.6). The Roe matrix for the system (9.8) is given by

A= [g ‘(ﬂ (9.11)

wherea = %(64 +a) andl = %(U| + U;), so the Roe solver uses the decomposition

U — U .| @ |1
{arur—aauj :“1[—«%& +°‘2[0]’ 042

This does not give the exact Riemann solution since the propagation&pétte moving
wave is not the correct speadunlessa = a.

For the simple scalar linear problem (9.3) there are many ways to determine the e
solution, as we have just illustrated. For more general nonlinear systems with discontint
fluxes some sort of approximate Riemann solver must be used. We hope that the relax
Riemann solvers might provide a better starting point than augmented systems of the f
(9.8).

There is a simplification of the relaxation Riemann solver (9.2) that arises naturally
an implementation based on the wave-propagation method of Section 8 and which g
another interpretation of this Riemann solver. Since the waves numbe#ed through
2m are viewed as being stationary at the interface we Bavé = - - . = s°™ = 0 and these
waves do not contribute to the fluctuations (8.2) or to the correction fluxes (8.5). Hence
only need to determine the coefficients . . ., «™. These can be determined by considering
only the lower part of the systemin (9.2), i.e.,

f.(U) — fi(U) =alstri+. . 4+ aMs™r™, (9.13)

which is a linear system ah equations for then unknownsa?, ..., «™. Note that this

is similar to the standard Riemann solver (1.4), but we decompose the jurhpnto
eigencomponents rather than the jumpiThis makes sense since there is no jumg in
across the stationary interface and so the full jufnf,) — f;(U;) can be split into pieces
corresponding to propagating waves, wherehas an unknown jump across the interface
This is consistent with standard Riemann solvers in the case of a single flux function
least in some cases. For a linear constant coefficient systemf\itith= Au, or for Roe’s
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method based on a matri satisfying (1.7), performing the decomposition (9.13) would
result in exactly the same coefficient8 as performing the decomposition (1.4).

Approximate Riemann solvers based on splitting the jump rave recently been stud-
ied numerically for various applications in work with Bad¢ al. [4]. This work started
directly from (9.13) and we only recently realized the connection with relaxation schem
Preliminary results indicate that it may be a useful approach for many problems, includ
the implementation of finite-volume methods for conservation laws on curved manifol
which leads to spatially varying flux functions due to the metric terms. This approach
also being used in a wave-propagation algorithm for the Einstein equations in numer
relativity work by Bardeen and Buchman [5].

10. SOURCE TERMS

Now consider a conservation law
ur+ fF(Wyx =y (10.1)

with a source termy. One common approach to solving this equation is to use a fraction
step method, alternating between solving the homogeneous conservation law and the
u; = . This leads to inaccuracy in some cases, for example, if the solution is nearly
steady state with (u)x ~ ¢ and we wish to study the propagation of small disturbance
on this background state (see the discussion in [37], for example).

Another approach is to somehow incorporgaténto the solution of Riemann problems.
One way to do this is to discretize the source terms as a sum of delta function singulari
with strength proportional ta\x at the cell interfaces, so that the effect of the source
is concentrated at these points. This approach is taken by Jenny alfet (23] in their
Rankine—Hugoniot—Riemann solyfar example. In this case we must solve a more gener:
Riemann problem of the form

U + f(u)xy = W8 (x), (10.2)

wherew = AX y;_1,,is the strength of the delta function at this interface and theldjata,
come from the cells to the left and right. The solution to this Riemann problem consi:
of propagating waves satisfying the usual Rankine—Hugoniot jump conditions away fr
x/t = 0 (where the source term vanishes) along with jumpsdoross</t = 0 that satisfy

fuH - U =w. (10.3)
This is similar to (9.1) but now the flux is not continuous at the interface because of t

singular source. This suggests that we use a Riemann solver analogous to (9.2) but witl
source term included,

U U =t rt ml[ ™ m+1 et om| €™
f(Ur)_f(U|)—lIJ:| =«o [Slr1]+...+a smpm +«a 4+t '
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As in the wave-propagation implementation of methods based on (9.1), we only ne
ol, ..., a«™and these can be obtained by solving the smatler m system

fU)— fU) -V =alstrl4 ... 4oMsTr™, (10.5)
and then using
WP = qaPrP (10.6)

as thepth wave in the algorithm described in Section 8.
Note that a humerical steady state will be maintained by this method. Suppose that
cell averaged)!" and source termg; , , satisfy

fU") - f(Uy)

AX

=Yil1 (10.7)

at time t,. Then the left-hand side of (10.5) will be zero and heade= 0 for p =
1,2, ..., m. All waves WP arising from each modified Riemann problem will then have
zero strength and a wave-propagation algorithm will reduce to gl\)iﬁ’fg1L =U".

If the solution does not satisfy (10.7) exactly but is close to a steady state, then it is
deviation from steady state that is used to define the waves in the approximate Rien
solution. This is similar in spirit to the quasi-steady wave-propagation algorithm propose
[37]. In that algorithm the delta function singularities were placed at cell centers rather tt
cell interfaces, however, and a new set of Riemann problems at these points was introd
to cancel out the source terms. An algorithm based on (10.5) is easier to implement 1
the one proposed in [37], and preliminary results indicate that it may also be more rok
when the solution deviates further from steady state.

11. CONCLUSIONS

We have explored the connection between a simple relaxation scheme ofthe type prop
by Jin and Xin [26] and a class of approximate Riemann solvers for the original conserva
law. For a system ah conservation laws this solver uses #aves and is based on splitting
up both the jump im and the jump in the flux simultaneously. This insures that conservatic
is maintained, and in the simplest case can be directly related to the HLL Riemann sol
Approximate Riemann solvers based on characteristic decompositions, such as Roe’s
be related to more general relaxation systems. It may be possible to exploit this connec
to improve our understanding of both types of methods.

The added flexibility of these more general approximate Riemann solvers may be us
in some applications. We briefly discussed some possibilities for systems where a |
matrix is unavailable, for problems with discontinuous flux functions, and for problen
with source terms. Some specific applications are now being explored and will be repol
on elsewhere.
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