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We show that a simple relaxation scheme of the type proposed by Jin and Xin
[Comm. Pure Appl. Math.48, 235 (1995)] can be reinterpreted as defining a parti-
cular approximate Riemann solver for the original system ofm conservation laws.
Based on this observation, a more general class of approximate Riemann solvers is
proposed which allows as many as 2m waves in the resulting solution. These solvers
are related to more general relaxation systems and connections with several other
standard solvers are explored. The added flexibility of 2mwaves may be advantageous
in deriving new methods. Some potential applications are explored for problems with
discontinuous flux functions or source terms.c© 2001 Academic Press

1. INTRODUCTION

Consider the conservation law

ut + f (u)x = 0, (1.1)

whereu ∈ IRm and the flux functionf (u) may be nonlinear. We assume the system is
hyperbolic, so the Jacobianf ′(u) is diagonalizable with real eigenvalues. Many finite-
volume methods for this conservation law are based on solving Riemann problems at
cell interfaces between the neighboring cell averages. The Riemann problem consists of
Eq. (1.1) together with piecewise constant data with a single discontinuity between two
valuesUl andUr . Often some approximate Riemann solver is used, which consists ofMw

wavesW p ∈ IRm propagating at some speedssp ∈ IR for p = 1, 2, . . . ,Mw. The vectors
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572

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press
All rights of reproduction in any form reserved.



RELAXATION RIEMANN SOLVERS 573

W p represent the jump inu across each wave and must sum up to the total jump,

Ur −Ul =
Mw∑
p=1

W p. (1.2)

For a linear system

ut + Aux = 0, (1.3)

for example, the exact Riemann solution has this form, withMw = m and thesp the eigen-
values ofA. EachW p is an associated eigenvector. The waves can be determined by first
choosing some specific set of eigenvectorsr p and then solving the linear system

Ur −Ul =
m∑

p=1

α pr p (1.4)

for the scalar coefficientsα p and finally settingW p = α pr p. We find thatα = R−1(Ur −
Ul ), whereR is the matrix of right eigenvectors. In this case we also have

AUr − AUl = A(Ur −Ul ) =
m∑

p=1

spW p. (1.5)

More generally, suppose for a nonlinear fluxf that the decomposition (1.2) and choice
of speedssp have the property that

f (Ur )− f (Ul ) =
Mw∑
p=1

spW p, (1.6)

which is a generalization of (1.5). Then an upwind algorithm and high-resolution variants
can be defined in terms of these waves and speeds, for example, using the wave-propagation
approach of [36], which is reviewed in Section 8.

One important approximate Riemann solver of this form was proposed by Roe [45] and
has been extensively used. The Jacobian matrixf ′(u) is evaluated at a special average of
Ul andUr , defining a matrixÂ with the property that

Â(Ur −Ul ) = f (Ur )− f (Ul ). (1.7)

The eigenvalueŝλp of Â are used as the wave speedssp and the eigenvectors of̂A are used
to define the waves. Then (1.6) follows from (1.7). In this case againMw = m. If the true
Riemann solution contains a transonic rarefaction wave, however, then this approximate
solution may need to be modified using an “entropy fix” as described in Section 5. One
possible approach is to replace the corresponding wave by a pair of waves moving in
opposite directions. In this case we could then view the approximate Riemann solution as
consisting ofMw = m+ 1 waves.

In this paper we explore a more general class of Riemann solvers in whichMw = 2m
waves are used, although some of these may coalesce so that the number can be reduced.
Instead of the standard decomposition of the form (1.4) we perform a decomposition of the
form [

Ur −Ul

f (Ur )− f (Ul )

]
= α1

[
w1

φ1

]
+ α2

[
w2

φ2

]
+ · · · + α2m

[
w2m

φ2m

]
, (1.8)
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where the vectorswp, φ p ∈ IRm are first chosen in some manner (several possibilities
are discussed below) along with speedssp for p = 1, 2, . . . ,2m. The scalar coefficients
α1, . . . , α2m are then determined by solving the 2m× 2m linear system defined by (1.8).
This is possible provided the 2m vectors appearing in (1.8) are linearly independent. The
waves needed for updating cell averages are then

W p = α pwp, p = 1, 2, . . . ,2m, (1.9)

with speedssp. We will refer to this as arelaxation Riemann solverfor reasons which will
be made clear in Section 2.

In general we will choose

φ p = spwp, (1.10)

although this is not entirely necessary (see Section 8). The rationale for this choice is that
(1.6) will then automatically be satisfied by the resulting waves, no matter how thewp and
sp are chosen. This is accomplished by introducing more degrees of freedom (2m rather
thanm) and requiring that the jump inf is decomposed in a manner consistent with the
jump inu. Note that (1.10) is reminiscent of the Rankine–Hugoniot jump conditions relating
the jump in f across a shock to the jump inu.

One goal of this paper is to show that by considering a decomposition of the form (1.8) it
is possible to gain a more unified view of several approximate Riemann solvers already in
use, including the Roe solver, the Roe solver with an entropy fix, and the simple HLL and
HLLE solvers. These solvers involve fewer than 2m waves in their natural implementation,
but can be reinterpreted in the above form with some waves coalesced into fewer waves.
See Sections 3 through 6.

We have also found that the relaxation scheme of Jin and Xin [26] (at least in the limit
as the relaxation time vanishes) is closely related to an approximate Riemann solver of
this type; see Section 2. Indeed the decomposition (1.8) was first suggested to us by an
attempt to generalize and improve the relaxation scheme. Another goal of this paper is to
explain and explore this connection. The approximate Riemann solver interpretation may
lead to new insights into relaxation schemes and how they might be improved. Conversely,
methods based on standard approximate Riemann solvers such as Roe’s can be reinterpreted
as modified relaxation schemes. This may aid in the theoretical analysis of these methods
(see Section 7).

The added flexibility of specifying 2m waves rather thanm also allows some interesting
new possibilities in deriving approximate Riemann solvers. Exploring some of these is the
final goal of this paper. In Sections 9 and 10 we look at possible applications to conservation
laws with discontinuous coefficients and with source terms.

2. RELAXATION SCHEMES

Relaxation schemes have recently been widely applied and studied; see, for example,
[1, 9, 10, 18, 24, 28, 31, 38]. Another related class of numerical methods are the “kinetic
schemes” based on the Boltzmann equation and relaxation toward equilibrium. See [2] for
one discussion of these connections. Bouchut [6, 7] has recently presented an interpretation
of kinetic schemes as approximate Riemann solvers for flux-vector splitting methods, though
these take a rather different form from what we introduce here.
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The original relaxation scheme of Jin and Xin [26] is based on replacing the conservation
law (1.1) by a larger system of dimension 2m,

ut + vx = 0
(2.1)

vt + D2ux = 1

τ
( f (u)− v),

whereu, v ∈ IRm, andD2 ∈ IRm×m is a positive definite matrix. Jin and Xin choose it to
be a diagonal matrix with positive diagonal elements and call itA, but we useA for linear
systems such as (1.3) and call the matrixD2 in (2.1) to avoid square roots in formulas below,
and also because this form will be generalized below to a situation whereD2 is replaced
by the product of two different matrices. We assume without loss of generality thatD itself
has positive eigenvaluesd j > 0 for j = 1, 2, . . . ,m. Then the matrix[

0 I

D2 0

]
(2.2)

appearing as the coefficient matrix on the left-hand side of the system (2.1) has 2m eigen-
values given by the pairs±d j for j = 1, 2, . . . ,m.

The original conservation law has been replaced by a linear hyperbolic system with a
relaxation source term which rapidly drivesv→ f (u) when the relaxation timeτ > 0 is
small. If we setv ≡ f (u) then the first equation of (2.1) reduces to the original conservation
law. In some cases it can be shown analytically that solutions to (2.1) approach solutions
to the original problem asτ → 0. A general necessary condition for such convergence is
that asubcharacteristic conditionbe satisfied. For (2.1), this requires that every eigenvalue
λ of f ′(u) satisfies

−dmax≤ λ ≤ dmax, (2.3)

wheredmax= maxj d j is the spectral radius ofD. This insures that the characteristic speeds
of the hyperbolic part of (2.1) are at least as large as the characteristic speeds of the original
problem. See [11, 21, 39, 41, 42, 48, 49], for some discussions of this condition and
convergence properties.

The relaxation scheme we describe is not exactly the same as Jin and Xin’s, but is the
simplest variant of it. We use a fractional step method to advance the solution by one time
step1t :

1. GivenUn andVn, apply some finite-volume method to update these over time1t by
solving the homogeneous linear hyperbolic system[

u
v

]
t

+
[

0 I
D2 0

] [
u
v

]
x

= 0. (2.4)

Call the new valuesU ∗ andV∗.
2. UpdateU ∗,V∗ to Un+1,Vn+1 by solving the equations

ut = 0
(2.5)

vt = 1

τ
( f (u)− v)

over time1t .
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Clearly we haveUn+1 = U ∗. The variablev evolves according to a simple linear ODE
since f (u) is constant during this evolution. An implicit Runge–Kutta method was recom-
mended in [26], or alternatively this can be solved exactly,

Vn+1 = f (Un+1)+ e−1t/τ (V∗ − f (Un+1)). (2.6)

We will only be concerned with the limiting caseτ → 0 in which case we can simply set

Vn+1 = f (Un+1) = f (U ∗). (2.7)

(This is what is called therelaxed schemein [26].) The relaxation scheme then consists of
these two steps:

1. Solve a linear hyperbolic equation to update bothU andV to getUn+1 andV∗,
2. IgnoreV∗ and setVn+1 = f (Un+1).

In the standard implementation, one works with a larger system of 2mequations and updates
bothU andV using a hyperbolic method, even though the resultingV∗ is then ignored.
A slightly different and more efficient implementation makes it clear how this scheme is
related to approximate Riemann solvers. Since we knowVn+1 = f (Un+1), we do not need
to keep track ofV separately and there is no need to updateVn to V∗. Instead we view
the relaxation scheme as a way to updateUn to Un+1 and store only thesem-vectors as in
any other finite-volume method for the original conservation law. We do still work with the
system (2.4) in the process of updating these vectors, but we now view this system only as
a means for defining an approximate Riemann solver. Given statesUl andUr we compute
Vl = f (Ul ) andVr = f (Ur ) and then solve the Riemann problem for (2.4) with data

[
Ul

f (Ul )

]
,

[
Ur

f (Ur )

]
. (2.8)

Solving this linear Riemann problem requires an eigendecomposition exactly of the form
(1.8), where the vectors appearing in this decomposition are the 2m eigenvectors of the
matrix (2.2). Once we have performed this decomposition, the wavesW p = α pwp and
speedssp (the corresponding eigenvalues of (2.2)) are used to updateUn to Un+1. The
relaxation process has disappeared altogether. Of course one could also storeVn and update
it to V∗ using the wavesα pφ p, but this would be wasted effort sinceV∗ is never used.

Let zj be the eigenvector of the matrixD that corresponds to the eigenvalued j , for j =
1, 2, . . . ,m. Then for eachj the matrix (2.2) has a pair of linearly independent eigenvectors[

w2 j−1

φ2 j−1

]
=
[

zj

−d j zj

]
and

[
w2 j

φ2 j

]
=
[

zj

+d j zj

]
, (2.9)

with eigenvaluess2 j−1 = −d j ands2 j = +d j , respectively. Note that these vectors satisfy
the assumption (1.10).

In particular, for the case of a diagonal matrixD = diag(d1, d2, . . . ,dm) as used in [26],
we havezj = ej , the j th unit vector. The elementsd j of D must be chosen so that the
subcharacteristic condition (2.3) is satisfied. For the Euler equations, Jin and Xin choose
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them in [26] as some approximations to the eigenvaluesu− c, u, andu+ c of the Jacobian
matrix (whereu is the velocity andc the sound speed).

Note that whenzj = ej , the decomposition (1.8) splits intom decoupled 2× 2 problems
of the form [

U j
r −U j

l

V j
r − V j

l

]
= α2 j−1

[
1

−d j

]
+ α2 j

[
1

d j

]
(2.10)

involving only the j th component of the vectorU and thej th component of the flux vector
V = f (U ). Solving this system gives

α2 j−1 = 1

2d j

(
d j
(
U j

r −U j
l

)− (V j
r − V j

l

))
(2.11)

α2 j = 1

2d j

(
d j
(
U j

r −U j
l

)+ (V j
r − V j

l

))
.

When applied to the Euler equations, for example, the density and its flux are split into
one pair of waves with speeds±d1, the momentum is split into a second pair of waves
with speeds±d2, and the energy is split into a third pair of waves with speeds±d3. The
splitting of each component is done in such a way that conservation is maintained, which is
guaranteed by the manner in which the flux differences are split along with the components
of Ur −Ul so that (1.6) is satisfied. In the next section we will show that this can be viewed
as a generalization of the HLL Riemann solver.

3. RELATION TO THE HLL SOLVER

A simple approximate Riemann solver was discussed by Hartenet al. [20]. This HLL
solver consists of approximating the Riemann solution by two waves (regardless of the
dimensionmof the system) with some speedsal andar chosen to approximate the minimum
and maximum characteristic speeds of the system. It is often called the HLLE solver when
the specific choice ofal andar recommended by Einfeldt [14] is used. The wave strengths
are

W1 = Um −Ul , W2 = Ur −Um, (3.1)

where the middle stateUm is chosen to preserve conservation by requiring

(ar − al )Um = ar Ur − al Ul − ( f (Ur )− f (Ul )). (3.2)

This yields

Um = 1

ar − al
(ar Ur − al Ul − ( f (Ur )− f (Ul ))). (3.3)

Suppose for the moment thatal = −ar with ar > 0. Then this is equivalent to the relaxation
Riemann solver described above if we takeD to be the diagonal matrixD = ar I , so that

s2 j−1 = −d j = al and s2 j = d j = ar . (3.4)
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Then thej th system (2.10) splits thej th component ofUr −Ul into two waves propagating
at speedsal andar . After doing this for allmcomponents we obtain 2mwaves, each carrying
a jump in only one component ofu. But m of these waves travel at the same speedal and
the otherm at speedar and so we can lump these together into two waves, which then must
be the HLL waves (3.1) since both approaches are conservative. We can verify directly that
these are the same by using the solution (2.11). The left-going wave carries a jumpα2 j−1

in the j th component and so the intermediate stateUm has j th component

U j
m = U j

l + α2 j−1

= 1

2d j

(
d j
(
U j

r +U j
l

)− (V j
r − V j

l

))
= 1

2

(
U j

r +U j
l

)− 1

2d j

(
f
(
U j

r

)− f
(
U j

l

))
. (3.5)

Sinced j = ar = −al we have 2d j = ar − al and this agrees with thej th component of
(3.3).

We thus see that the relaxation scheme in the caseD = d I amounts to using the HLL
Riemann solver withal = −d and ar = d. Let λ j (u) denote thej th eigenvalue of the
Jacobian matrixf ′(u). If we choose

d = max
1≤ j≤m

(max(|λ j (Ul )|, |λ j (Ur )|)) (3.6)

as an upper bound on the characteristic speeds (assuming the system is genuinely nonlinear)
and then apply the first-order upwind method together with this approximate Riemann
solver, the resulting method is simply Rusanov’s method, as discussed in [46], for example.
This method is also known as the local Lax–Friedrichs (LLF) method. If we choosed =
1x/1t , an upper bound on all possible wave speeds provided the CFL condition is satisfied
for the grid being used, then this method reduces to the classical Lax–Friedrichs (LxF)
method. We note in passing that the LxF and LLF methods can be extended to second-order
accuracy to obtain the central schemes of Nessyahu and Tadmor [43] and Kurganov and
Tadmor [30], respectively, and connections between these methods and relaxation schemes
are briefly discussed in the Introduction to [30].

If D is diagonal but the diagonal elementsd j are not equal (as in the choice of Jin and
Xin [26]), we can view the relaxation scheme as a generalization of the HLL solver in which
separate speedsa j

r = −aj
l = d j are chosen for each component of the vectoru. It is not

clear that this generalization will be an improvement, however, since in coupled systems of
conservation laws we do not expect information in different components ofu to propagate
at different speeds. Rather, it is different eigencomponents ofu (based on the eigenvectors
of f ′(u)) which propagate at different speeds. This suggests that a more substantial im-
provement might be made by replacing the unit vectorszj = ej used in deriving HLL from
(2.9) by some approximations to the eigenvectors off ′(u). Generalizations of this form
will be pursued in Section 6.

First we present a generalization of the relaxation scheme that agrees with the more
general HLL method in the case whenal 6= −ar . Rather than using a matrix of the form
(2.2), consider a relaxation system[

u
v

]
t

+
[

0

−Dl Dr

I

(Dl + Dr )

] [
u
v

]
x

=
[

0

( f (u)− v)/τ
]
, (3.7)
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whereDl = al I andDr = ar I . The coefficient matrix appearing in this system,[
0

−Dl Dr

I

(Dl + Dr )

]
, (3.8)

has eigenvector pairs [
ej

al ej

]
and

[
ej

ar ej

]
, (3.9)

with eigenvaluesal andar , respectively. Note that ifal = −ar then the matrix (3.8) reduces
to (2.2). Using these vectors (3.9) in the decomposition (1.8) gives the HLL solver for
arbitraryal andar .

4. RELATION TO THE ROE SOLVER

Rather than usingw2 j−1 = w2 j = ej (for j = 1, 2, . . . ,m) in the decomposition (1.8),
it is attractive to use approximations to the eigenvectors of the Jacobian matrixf ′(u) near
Ul andUr . One obvious choice is to use the eigenvectorsr̂ j of the Roe matrixÂ satisfying
(1.7). If we then choose two distinct speedssj

l 6= sj
r we will have two linearly independent

vectors [
w2 j−1

φ2 j−1

]
=
[

r̂ j

sj
l r̂ j

]
and

[
w2 j

φ2 j

]
=
[

r̂ j

sj
r r̂ j

]
. (4.1)

Since thêr j for j = 1, 2, . . . ,m are linearly independent it then follows that the full set of
2m vectors given by (4.1) forj = 1, 2, . . . ,m will span IR2m and a decomposition of the
form (1.8) can always be performed to define an approximate Riemann solution.

It turns out that we can also choosesj
l = sj

r provided that we choose this value to beλ̂ j ,
the j th eigenvalue of the matrix̂A. In this case the two vectors in (4.1) are identical and
there are onlym distinct vectors in (1.8),

[
Ur −Ul

f (Ur )− f (Ul )

]
= α̂1

[
r̂ 1

λ̂1r̂ 1

]
+ · · · + α̂m

[
r̂ m

λ̂mr̂ m

]
. (4.2)

This 2m×m linear system has a unique solution ˆα ∈ IRm in spite of the fact that it appears
to be overdetermined. The particular vector on the left-hand side of (4.2) lies in the span of
thesem vectors sincêr j andλ̂ j come from the Roe matrix̂A satisfying (1.7). In fact, we
can simply solve

Ur −Ul = α̂1r̂ 1+ · · · + α̂mr̂ m (4.3)

as one usually does with the Roe solver and then

f (Ur )− f (Ul ) = α̂1λ̂1r̂ 1+ · · · + α̂mλ̂mr̂ m (4.4)

will automatically be satisfied by (1.7), as is easily seen if we multiply (4.3) byÂ.
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5. ENTROPY FIXES

A failing of the Roe solver is that it can lead to entropy-violating shocks in numerical
solutions based on this decomposition. This typically happens if the true Riemann solution
contains a transonic rarefaction wave in some family, say thekth family, with characteristic
speeds that increase from negative to positive values through the rarefaction fan. This means
that information in thekth family should travel partly to the left and partly to the right and
affect cell averages on both sides. The Roe solver approximates every wave by a single
discontinuity propagating at a speed given by an eigenvalue ofÂ, and in the transonic
rarefaction casêλk ≈ 0 typically and the proper spreading does not occur. An entropy fix
is often used to address this problem. One possibility proposed by Harten and Hyman [19]
(see also [35]) is to replace the single wave ˆαkr̂ k in this case by a pair of wavesαk

l r̂ k and
αk

r r̂ k propagating at speedssk
l < 0< sk

r that are chosen to approximate the characteristic
speeds at each edge of the rarefaction fan. The total wave strength should be the same, so
we need

αk
l + αk

r = α̂k, (5.1)

and to maintain conservation we also require

αk
l sk

l + αk
r sk

r = α̂kλ̂k. (5.2)

This gives a linear system of two equations to solve forαk
l andαk

r , yielding

αk
l =

(
α̂ksk

r − λ̂k
)/(

sk
r − sk

l

)
(5.3)

αk
r =

(
λ̂k − α̂ksk

l

)/(
sk
r − sk

l

)
.

Exactly this same method can be derived by using a relaxation Riemann solver of the
form (1.8), which we now take to be of the special form[

Ur −Ul

f (Ur )− f (Ul )

]
= α1

l

[
r̂ 1

s1
l r̂ 1

]
+ α1

r

[
r̂ 1

s1
r r̂ 1

]
+ · · · + αm

l

[
r̂ m

sm
l r̂ m

]
+ αm

r

[
r̂ m

sm
r r̂ m

]
. (5.4)

Here we are allowing each wave speedλ̂ j to be replaced by a pair of speedssj
l andsj

r . If
we takesj

l = sj
r = λ̂ j for every j then this reduces to the original Roe solver with each

vector repeated twice. This system will have infinitely many solutions since anyα
j
l andα j

r

satisfying

α
j
l + α j

r = α̂ j (5.5)

provides a solution, where ˆα j are the Roe coefficients in (4.2). For any such choice ofα
j
l

andα j
r we essentially have the original Roe solver—we have simply replaced one wave by

two waves propagating at the same speed and adding up to the original wave.
If the kth family has a transonic rarefaction, however, then we can choosesk

l < 0< sk
r

(while still takingsj
l = sj

r = λ̂ j for j 6= k) and the decomposition (5.4) results in the Roe
solver with the entropy fix described above. As in the discussion of the HLL method in
Section 3, including1 f in the decomposition (5.4) ensures that conservation is maintained
and leads to the same coefficientsαk

l andαk
r as in (5.3).
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6. GENERALIZED ROE SOLVERS

We could go further and allowsj
l 6= sj

r in each family, while still using the eigenvec-
tors r̂ j of the Roe matrix and a decomposition of the form (5.4). One possible choice
might be

sj
l = λ j (Ul ), sj

r = λ j (Ur ), (6.1)

for j = 1, 2, . . . ,m. This choice would automatically give spreading across any rarefaction
wave, including transonic ones. On the other hand ifλ j (Ul ) > λ j (Ur ) then the j th wave
in the true Riemann solution is presumably a shock, but we would be approximating it by
two waves. We can still solve the system (5.4). The state that arises in the approximate
solution between these two waves can be viewed as an approximation to the value that
would be found by averaging an overturned compression wave as in Brenier’s transport-
collapse method [8] or the large time step method of [34]. This also has similarities to the
method developed by Engquist and Osher [15] for scalar problems and Osher and Solomon
[44] for systems, often called the Osher solver in general. In this approach only the integral
curves of the eigenvectors are used to compute an approximate Riemann solution, so that
rarefaction waves and overturned compression waves are used in every family. Hence (5.4)
with the choice (6.1) might be viewed as an approximation to the Osher solver based on Roe
averages. Perhaps a closer connection can be made with a different choice of eigenvectors
and speeds in (5.4).

Note that ifsj
l andsj

r have the same sign then the generalization proposed in this section
does not really change the contribution from thej th family to the numerical solution, at
least not at the level of a first-order upwind method based on these waves. This is because
the two waves in this family affect only one of the neighboring cell averages and might as
well be lumped into a single wave. We can combine them as

α
j
l

[
r̂ j

sj
l r̂ j

]
+ α j

r

[
r̂ j

sj
r r̂ j

]
= β j

[
r̂ j

sj r̂ j

]
, (6.2)

for some choice ofβ j andsj , wheresj should then be used as the speed of this lumped
wave. We can easily solve for the required values:

β j = α j
l + α j

r
(6.3)

sj = α
j
l sj

l + α j
r sj

r

α
j
l + α j

r

.

On the other hand, we know there is a unique decomposition ofUr −Ul into the eigenvectors
r̂ j with the coefficients ˆα j , and from this we can deduce that in factβ j = α̂ j and also that
sj = λ̂ j , the corresponding Roe velocity.

It is only in the transonic case that something different is obtained by the more general
choice (6.1). For a transonic rarefaction this gives a standard entropy fix, as already dis-
cussed. For a transonic shock this would introduce additional dissipation. This may also
be desirable in some cases, since the lack of dissipation in shocks for whichλ̂k ≈ 0 is also
known to cause numerical difficulties, such as nonphysical oscillations near slowly moving
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shocks. The addition of more dissipation in this case is one approach to improving solutions
in this case. See, for example, [3, 13, 25, 27].

A further generalization of this solver is obtained by using vectorsr̂ j in (5.4) that are not
the eigenvectors of the Roe matrix. This may be useful for problems where a Roe average
satisfying (1.7) is not available, and instead one wishes to use a simpler average such as
Â = f ′( 1

2(Ul +Ur )). By taking ther̂ j in (5.4) to be the eigenvectors of this matrix and

choosing some reasonable values forsj
l andsj

r , for example, (6.1), it is possible to obtain
consistent decompositions ofUr −Ul and f (Ur )− f (Ul ) in terms of these 2m waves.
Moreover, we can merge each pair of waves into a single wave using (6.2) withβ j andsj

defined by (6.3) if desired (typically in all but the transonic rarefaction case). We then have
a decomposition intom waves,

Ur −Ul =
m∑

j=1

β j r̂ j (6.4)

and set of speedssj for which

f (Ur )− f (Ul ) =
m∑

j=1

sjβ j r̂ j (6.5)

holds. This mimics an important property of the Roe solver that is useful in wave-propagation
implementations (see Section 8).

One possible application of this idea would be to use the Roe eigenvectors coming from
a simpler but related system of equations as an approximation. This could be useful for
problems where a Roe matrix cannot be found directly. A similar idea has been proposed by
by Coquel and Perthame [12] and implemented by In [22] for one particular system. They
use the classical Roe solver for the polytropic Euler equations in order to solve real-gas
problems with more complicated equations of state. An additional energy variable is added
to the system and relaxation in the energy equations is used to couple the two. In the limit
of zero relaxation time this can be viewed as defining a new approximate Riemann solver
for the real-gas problem. This method is not directly in the form of the relaxation Riemann
solver (5.4), however.

7. THE ROE SOLVER AS A RELAXATION SCHEME

The Roe solver and the generalization presented in the previous section can be viewed
in the context of relaxation schemes using the connection introduced in Section 2. This
may be useful in analyzing the Roe scheme. The decomposition (5.4) arises naturally in the
process of solving the 2m× 2m linear system appearing in a relaxation scheme based on
the relaxation system (3.7). However, the matricesDl andDr are no longer diagonal, but
instead are given by

Dl = R̂Sl R̂
−1, Dr = R̂Sr R̂−1, (7.1)

where R̂ is the matrix of Roe eigenvectors,Sl = diag(s1
l , . . . , s

m
l ) and Sr = diag(s1

r , . . . ,

sm
r ). If the speeds are all distinct,sj

l 6= sj
r , then the coefficient matrix (3.8) is diagonalizable

and the vectors appearing in (5.4) are the eigenvectors. For the original Roe scheme, on the
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other hand,sj
l = sj

r = λ̂ j for all j . In this caseDl = Dr = Â and this matrix reduces to[
0 I

−Â2 2Â

]
. (7.2)

This matrix is defective: each eigenvalueλ̂ j has algebraic multiplicity 2 but geometric
multiplicity 1 and there are onlym distinct vectors in (5.4) as already discussed.

Normally a relaxation system of the form (2.1) or (3.7) yields a solutionu(x, t) which
may converge to the solution of the original conservation law asτ → 0, but will not agree
with this solution forτ > 0. Instead, it approximates the solution to a viscous conservation
law of the form

ut + f (u)x = τ(B(u)ux)x +O(τ 2), (7.3)

where the viscosity matrixB(u) can be determined by a Chapman–Enskog expansion
[10, 39]. The structure of this viscosity matrix can play a role in determining whether the
correct entropy-satisfying solution is obtained in the limitτ → 0; see, for example, [6, 7,
17, 40]. For a relaxation system with the coefficient matrix (7.2), we find that

B(u) = −Â2+ 2Â f ′(u)− ( f ′(u))2. (7.4)

Note that if Ul ≈ Ur then Â ≈ f ′(u) and the viscosity matrix vanishes in the case of
equality. Moreover, even when there is a large jump betweenUl andUr it is possible that
this relaxation system will reproduce an exact weak solution to the original conservation law
even whenτ > 0, as if there were no viscosity. This happens in the special case when we
consider a Riemann problem between statesUl andUr that satisfy the Rankine–Hugoniot
jump condition for some scalar values,

f (Ur )− f (Ul ) = s(Ur −Ul ). (7.5)

Suppose we solve the relaxation system[
u
v

]
t

+
[

0 I

−Â2 2Â

] [
u
v

]
x

=
[

0

( f (u)− v)/τ
]

(7.6)

with this Riemann initial dataUl ,Ur andVl = f (Ul ), Vr = f (Ur ) and with the matrixÂ
chosen to be the Roe matrix for this data (and frozen at this value even ifu andv evolve).
Then the property (1.7) of the Roe matrix implies thatUr −Ul is an eigenvector of̂A,
proportional tor̂ k for somek, and thats= λ̂k is the corresponding eigenvalue. It follows
that

u(x, t) = u(x − λ̂kt, 0)
(7.7)

v(x, t) = v(x − λ̂kt, 0) = f (u(x, t))

is the solution to the relaxation system (7.6) for any value ofτ . The jump discontinuity
simply propagates with speedλ̂k and sincev ≡ f (u), the source term vanishes. This is a
weak solution of the original conservation law in this case, though it may not satisfy the
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entropy condition. If the discontinuity should spread into a rarefaction wave, the relaxation
system will instead produce the expansion shock.

Of course if this relaxation system is now used numerically as part of a relaxation scheme,
then numerical viscosity may be added when the linear system is solved numerically. But
in the casêλk = 0 it is possible that no smearing is introduced, as, for example in Roe’s
first-order method which produces entropy-violating solutions in the transonic case. It is
well known that this is caused by a lack of numerical viscosity, which has been extensively
analyzed by other means, but it is interesting to observe that this phenomenon is connected
with a relaxation system that itself lacks viscosity and produces entropy-violating weak
solutions even in the case when the data is not transonic. It is also interesting to note that the
viscosity matrix (7.4) generally fails to be positive definite. In fact ifÂ and f ′(u) commute
thenB(u) = −(Â− f ′(u))2 is negative definite.

Note that adding an entropy fix to Roe’s method, as described in Sections 5 and 6, changes
the relaxation system to one of the more general forms (3.7). The entropy-violating weak
solution is no longer an exact solution, as we have explicitly added spreading of this wave.

8. WAVE-PROPAGATION ALGORITHMS

A relaxation Riemann solver of the general type we have discussed could be used in
conjunction with any numerical method that is based on approximate Riemann solvers.
One simple finite-volume method that gives high-resolution results and directly uses a
wave decomposition of the form (1.2) is the wave-propagation method described in [36]
and implemented in theCLAWPACK software [33]. This method uses an updating formula
of the form

Un+1
i = Un

i −
1t

1x

(
A+1Ui−1/2+A−1Ui+1/2

)− 1t

1x

(
F̃ i+1/2− F̃ i−1/2

)
, (8.1)

whereA±1Ui−1/2 are the left-going and right-goingfluctuations resulting from the
Riemann solution at the grid interfacexi−1/2 and F̃ i−1/2 are correction fluxesyielding
high resolution. For the Riemann problem atxi−1/2 the data areUl = un

i−1 andUr = un
i and

we denote the resulting waves and speeds byWi−1/2 andsi−1/2. The simplest method of
this form based on (1.2) has̃Fi−1/2 = 0 and

A±1Ui−1/2 =
Mw∑
p=1

(
sp
i−1/2

)±W p
i−1/2, (8.2)

whereMw is the number of waves produced by the Riemann solver,s− = min(s, 0) and
s+ = max(s, 0). This is the first-order upwind method (Godunov’s method) based on the
approximate Riemann solution. In order to be conservative we require that

A−1Ui−1/2+A+1Ui−1/2 = f (Ui )− f (Ui−1). (8.3)

If a relaxation Riemann solver of the form (1.8) is used, then this will hold provided (1.10) is
satisfied. Alternatively, with an arbitrary choice ofwp

i−1/2 andφ p
i−1/2 in (1.8) we can obtain
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a conservative method by setting

A±1Ui−1/2 =
Mw∑
p=1

1

2

(
1± sgn

(
sp
i−1/2

))
φ

p
i−1/2. (8.4)

The high-resolution correction fluxes̃Fi−1/2 are defined in general by

F̃ i−1/2 = 1

2

Mw∑
p=1

∣∣sp
i−1/2

∣∣ (1− 1t

1x

∣∣sp
i−1/2

∣∣) W̃ p
i−1/2, (8.5)

whereW̃ p
i−1/2 is a limited version of the waveW p

i−1/2, obtained by comparingW p
i−1/2 with

the pth wave from the adjacent Riemann problem at eitherxi−3/2 (if sp
i−1/2 > 0) or atxi+1/2

(if sp
i−1/2 < 0). Any standard limiter can be applied. See [36] for more details.

If Mw > m then it may be possible and more efficient to combine some waves together and
use a smaller set of waves in these correction terms. For example, if the Roe solver with an
entropy fix is used then it is common to apply the entropy fix only in computingA±1Ui−1/2

and then use only the originalmwaves resulting from the Roe solver to define the correction
fluxes. This is typically necessary when limiters are used since the neighboring Riemann
problems are generally not transonic and provide onlym waves for comparison.

We also note that ifsp
i−1/2 = 0 for any wave then it makes no contribution toA±1Ui−1/2

in (8.2) or toF̃ i−1/2 in (8.5). In the applications discussed below in Sections 9 and 10, for
example, there will be 2m waves produced by the relaxation solver, but onlym of these will
have nonzero speeds.

9. DISCONTINUOUS FLUX FUNCTIONS

As one example of how a relaxation Riemann solver with 2m waves might prove useful,
consider a conservation law with a spatially varying flux functionf (u, x). One way to solve
this problem numerically is to use a finite-volume method with the flux function discretized
so that thei th grid cell has a flux functionfi (u) associated with it. At a cell interface
we must then solve a Riemann problem with dataUl ,Ur and two different flux functions
fl (u) and fr (u). When fl and fr are nonlinear, determining the exact Riemann solution for
this situation may be nontrivial, e.g., [16, 29, 32, 47]. We are currently investigating the
possibility of using a Riemann solver of the form (1.8) for such problems and here only
report some preliminary observations.

One natural way to use (1.8) might be to compute two sets of eigenvectors and eigenvalues
using the two Jacobian matricesf ′l (Ul )and f ′r (Ur ). Call theseλ j

l , r
j

l andλ j
r , r

j
r . These could

be used to define 2mvectors for use in (1.8). This does not seem to be a good idea in general,
however. Often bothλ j

l andλ j
r will have the same sign, indicating what direction thej th

wave is propagating. Suppose these are both positive, for example, indicating that this
wave is propagating into the cell on the right, where the flux function isfr (u). Then the
eigenvectorr j

r may be a useful component in the decomposition, butr j
l may be completely

irrelevant.
Instead, it is useful to observe that the Riemann solution must typically involve a station-

ary discontinuity inu (moving at speed 0) at the interface, between two valuesU ∗l andU ∗r
related via

fl (U
∗
l ) = fr (U

∗
r ). (9.1)
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This is required because the flux must be continuous at the interface. This suggests that the
Riemann solver should includem waves that allow jumps in each of them components of
u and combine to give no jump inf . If we also have somem vectorsr j and speedssj (for
j = 1, 2, . . . ,m) that represent the propagating waves we expect the Riemann solution to
contain, then we can look for a decomposition of the form[

Ur −Ul

fr (Ur )− fl (Ul )

]
= α1

[
r 1

s1r 1

]
+ · · · + αm

[
r m

smr m

]
+ αm+1

[
e1

0

]
+ · · · + α2m

[
em

0

]
.

(9.2)

The hard part in general may be to determine a suitable choice forr j andsj .
We illustrate this for one simple example, the variable-coefficient advection equation

ut + (a(x)u)x = 0, (9.3)

wherea(x) > 0 everywhere. The Riemann problem with dataUl ,Ur and speedsal ,ar has
flux functions fl (u) = al u and fr (u) = ar u. Physically this might model the density of
items traveling on a system of conveyer belts, at the junction between two belts moving at
different speeds. The exact solution of this Riemann problem is

u(x, t) =


Ul if x/t < 0

U ∗ if 0 < x/t < ar

Ur if x/t > ar ,

(9.4)

where

U ∗ = al Ul

Ur
, (9.5)

as determined by the requirement thatal Ul = ar U ∗ so that the flux is continuous.
Applying the decomposition (9.2) withm= 1 to this simple problem yields the correct

Riemann solution if we taker 1 = 1 ands1 = ar . We have[
Ur −Ul

ar Ur − al Ul

]
= α1

[
1
ar

]
+ α2

[
1
0

]
. (9.6)

Solving forα1, α2 yields

α1 = Ur − al Ul/ar = Ur −U ∗,
(9.7)

α2 = al Ul/ar −Ur = U ∗ −Ul ,

whereU ∗ is given by (9.5). These waves propagate with speedss1 = ar ands2 = 0 and so
the exact solution (9.4) is achieved.

Another standard way to approach this variable-flux problem is to viewa(x) as a second
variable in a system of two equations

[u
a

]
t
+
[au

0

]
x
= 0. (9.8)
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This is now a nonlinear system of two conservation laws in which both fields are linearly
degenerate (but there is no longer a spatially varying coefficient). The flux Jacobian is

[a u
0 0

]
, (9.9)

with eigenvaluesλ1 = 0, λ2 = a, and eigenvectors

r 1 =
[ u
−a

]
, r 2 =

[
1
0

]
. (9.10)

Solving the Riemann problem for this system again gives the solution (9.4).
Notice that attempting to use a Roe solver for the system (9.8) (as might be desired for

more complicated problems of this type) would be less successful than the simple Riemann
solver proposed in (9.6). The Roe matrix for the system (9.8) is given by

Â =
[

â û
0 0

]
, (9.11)

whereâ = 1
2(al + ar ) andû = 1

2(Ul +Ur ), so the Roe solver uses the decomposition[
Ur −Ul

ar Ur − al Ul

]
= α̂1

[
û
−â

]
+ α̂2

[
1
0

]
. (9.12)

This does not give the exact Riemann solution since the propagation speedâ of the moving
wave is not the correct speedar unlessal = ar .

For the simple scalar linear problem (9.3) there are many ways to determine the exact
solution, as we have just illustrated. For more general nonlinear systems with discontinuous
fluxes some sort of approximate Riemann solver must be used. We hope that the relaxation
Riemann solvers might provide a better starting point than augmented systems of the form
(9.8).

There is a simplification of the relaxation Riemann solver (9.2) that arises naturally in
an implementation based on the wave-propagation method of Section 8 and which gives
another interpretation of this Riemann solver. Since the waves numberedm+ 1 through
2m are viewed as being stationary at the interface we havesm+1 = · · · = s2m = 0 and these
waves do not contribute to the fluctuations (8.2) or to the correction fluxes (8.5). Hence we
only need to determine the coefficientsα1, . . . , αm. These can be determined by considering
only the lower part of the system in (9.2), i.e.,

fr (Ur )− fl (Ul ) = α1s1r 1+ · · · + αmsmr m, (9.13)

which is a linear system ofm equations for them unknownsα1, . . . , αm. Note that this
is similar to the standard Riemann solver (1.4), but we decompose the jump inf into
eigencomponents rather than the jump inu. This makes sense since there is no jump inf
across the stationary interface and so the full jumpfr (Ur )− fl (Ul ) can be split into pieces
corresponding to propagating waves, whereasu has an unknown jump across the interface.
This is consistent with standard Riemann solvers in the case of a single flux function, at
least in some cases. For a linear constant coefficient system withf (u) = Au, or for Roe’s
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method based on a matrix̂A satisfying (1.7), performing the decomposition (9.13) would
result in exactly the same coefficientsα p as performing the decomposition (1.4).

Approximate Riemann solvers based on splitting the jump inf have recently been stud-
ied numerically for various applications in work with Baleet al. [4]. This work started
directly from (9.13) and we only recently realized the connection with relaxation schemes.
Preliminary results indicate that it may be a useful approach for many problems, including
the implementation of finite-volume methods for conservation laws on curved manifolds,
which leads to spatially varying flux functions due to the metric terms. This approach is
also being used in a wave-propagation algorithm for the Einstein equations in numerical
relativity work by Bardeen and Buchman [5].

10. SOURCE TERMS

Now consider a conservation law

ut + f (u)x = ψ (10.1)

with a source termψ . One common approach to solving this equation is to use a fractional
step method, alternating between solving the homogeneous conservation law and the ODE
ut = ψ . This leads to inaccuracy in some cases, for example, if the solution is nearly in
steady state withf (u)x ≈ ψ and we wish to study the propagation of small disturbances
on this background state (see the discussion in [37], for example).

Another approach is to somehow incorporateψ into the solution of Riemann problems.
One way to do this is to discretize the source terms as a sum of delta function singularities
with strength proportional to1x at the cell interfaces, so that the effect of the source
is concentrated at these points. This approach is taken by Jenny and M¨uller [23] in their
Rankine–Hugoniot–Riemann solver, for example. In this case we must solve a more general
Riemann problem of the form

ut + f (u)x = 9δ(x), (10.2)

where9 = 1xψi−1/2 is the strength of the delta function at this interface and the dataUl ,Ur

come from the cells to the left and right. The solution to this Riemann problem consists
of propagating waves satisfying the usual Rankine–Hugoniot jump conditions away from
x/t = 0 (where the source term vanishes) along with jumps inu acrossx/t = 0 that satisfy

f (U ∗r )− f (U ∗l ) = 9. (10.3)

This is similar to (9.1) but now the flux is not continuous at the interface because of the
singular source. This suggests that we use a Riemann solver analogous to (9.2) but with the
source term included,

[
Ur −Ul

f (Ur )− f (Ul )−9
]
= α1

[
r 1

s1r 1

]
+ · · · + αm

[
r m

smr m

]
+ αm+1

[
e1

0

]
+ · · · + α2m

[
em

0

]
.

(10.4)
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As in the wave-propagation implementation of methods based on (9.1), we only need
α1, . . . , αm and these can be obtained by solving the smallerm×m system

f (Ur )− f (Ul )−9 = α1s1r 1+ · · · + αmsmr m, (10.5)

and then using

W p = α pr p (10.6)

as thepth wave in the algorithm described in Section 8.
Note that a numerical steady state will be maintained by this method. Suppose that the

cell averagesUn
i and source termsψn

i−1/2 satisfy

f
(
Un

i

)− f
(
Un

i−1

)
1x

= ψn
i−1/2 (10.7)

at time tn. Then the left-hand side of (10.5) will be zero and henceα p = 0 for p =
1, 2, . . . ,m. All wavesW p arising from each modified Riemann problem will then have
zero strength and a wave-propagation algorithm will reduce to givingUn+1

i = Un
i .

If the solution does not satisfy (10.7) exactly but is close to a steady state, then it is the
deviation from steady state that is used to define the waves in the approximate Riemann
solution. This is similar in spirit to the quasi-steady wave-propagation algorithm proposed in
[37]. In that algorithm the delta function singularities were placed at cell centers rather than
cell interfaces, however, and a new set of Riemann problems at these points was introduced
to cancel out the source terms. An algorithm based on (10.5) is easier to implement than
the one proposed in [37], and preliminary results indicate that it may also be more robust
when the solution deviates further from steady state.

11. CONCLUSIONS

We have explored the connection between a simple relaxation scheme of the type proposed
by Jin and Xin [26] and a class of approximate Riemann solvers for the original conservation
law. For a system ofm conservation laws this solver uses 2m waves and is based on splitting
up both the jump inu and the jump in the flux simultaneously. This insures that conservation
is maintained, and in the simplest case can be directly related to the HLL Riemann solver.
Approximate Riemann solvers based on characteristic decompositions, such as Roe’s, can
be related to more general relaxation systems. It may be possible to exploit this connection
to improve our understanding of both types of methods.

The added flexibility of these more general approximate Riemann solvers may be useful
in some applications. We briefly discussed some possibilities for systems where a Roe
matrix is unavailable, for problems with discontinuous flux functions, and for problems
with source terms. Some specific applications are now being explored and will be reported
on elsewhere.
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